Differences in exposure to negative news media are associated with lower levels of HPV vaccine coverage

May 1, 2017 § 1 Comment

adam g. dunn

Over the weekend, our new article in Vaccine was published. It describes how we found links between human papillomavirus (HPV) vaccine coverage in the United States and information exposure measures derived from Twitter data.

Our research demonstrates—for the first time—that states disproportionately exposed to more negative news media have lower levels of HPV vaccine coverage. What we are talking about here is the informational equivalent of: you are what you eat.

There are two nuanced things that I think make the results especially compelling. First, they show that Twitter data does a better job of explaining differences in coverage than socioeconomic indicators related to how easy it is to access HPV vaccines. Second, that the correlations are strongest for initiation (getting your first dose) than for completion (getting your third dose). If we go ahead and assume that information exposure captures something about acceptance, and that socioeconomic differences (insurance, education, poverty, etc.) signal differences…

View original post 979 more words

#GottaCureEmAll – Pokemon GO teaches healthcare a big lesson

August 1, 2016 § 18 Comments

If we can believe what we are seeing, Pokemon GO is the world’s most effective, and most widespread, population weight loss intervention. Already, its users spend more time on the game than on other wildly popular mainstream social media platforms like Facebook, Snapchat and Twitter. Over the space of a few weeks, it has prompted millions of children and teens to get off the couch, turn off Netflix, leave the laptop in their bedroom, and walk out into the world to breath the fresh air. More than a few adults have done the same.

Healthcare should pay attention. While healthcare researchers are slowly coming to grips with ‘new’ ideas like gamification and social media to defeat obesity, the game industry has jumped the queue and may have already done it. Silicon valley has drawn down on its deep well of expertise in building large and complex software systems, and in embedding such systems into the real world. They have drawn on their deep experience with and understanding of the psychology of online social media, of what makes games ‘fun’, and what makes them ‘sticky’.

I doubt if Niantic, the Pokemon company, looked to randomized clinical trials to design and implement their system. The world of software moves too fast for that. It has an engineering culture of fail early, fail often. And because of that, it has as much right as scientists to claim that it is driven by experimentation and data, or as the philosopher Karl Popper would have said, conjecture and refutation.

For those who have not been drawn in to the world of Pokemon Go, it may be hard to understand what the fuss is all about. It is just another time-wasting, obsession inducing computer game. Yes it is interesting that it uses augmented reality and your physical location as part of the gameplay, but so what? People just walk around collecting different characters, oblivious to what is happening around them. The end result is a different kind of walking screen-time zombie, with the added risk of walking into the traffic or driving into a wall as you play the game.

There is another way to look at it. Firstly, irrespective of the game ‘medium’, the real world ‘message’ is that people are more than happy to exercise, and to engage with others in the real world, with the right motivation. For younger generations who have grown up in a world that is digitally augmented, the digital-social complex is the way to access their lives. Jogging with a fitbit is probably compelling for those who already run or are motivated to exercise. Pokemon GO does something more miraculous. It causes the Lazarus generation to rise up, and to move.

Pokemon GO makes walking the basic currency of the game. If you chance upon the eggs of Pokemon creatures, the only way to make them hatch is to walk a prescribed distance. Some eggs require 10k of nurturing before they crack. If you want to catch different Pokemon (and if you are a player, you #gottaacatchemall), then you will find spawning grounds in parks and open spaces. If you want to top up the items you need to catch Pokemon, then you have to walk from one Pokestop to another.

One of things that appears to make gambling ‘sticky’ is the uncertainty of reward. Each rare win reinforces the desire to keep trying for a bigger future reward. Pokemon GO has an interesting strategy of combining certainty in reward (eggs hatch after a defined distance is walked) with uncertainty (creatures appear unpredictably, and their behavior and value is unpredictable). As you progress in the game the rewards increase along with your status. Our brains are washed in an addictive dopamine broth with every reward, every step forward.

Pokemon GO also strives for social equity. When a creature appears in a given location, anyone who is there can see it and catch their copy of it. This means that there is real value in finding stronger players than yourself, because they will trigger the arrival of rarer creatures. These stronger players are also likely to have set lures to attract creatures, and the benefit of these lures is also socialized. Stronger players will have obtained their status by walking great distances, and so a sort of social modeling probably takes place influencing the behavior of newer players, further reinforcing the culture of movement.

Mass and spontaneous social congregation is an unexpected side-effect. Reports of many thousands of people all rapidly congregating in parks as rare creatures appear have been repeatedly reported. It is a sociologically fascinating emergent property of the game. It can also drive the locals crazy, blocking roads, and keeping people awake, as crowds chase the different creatures that appear at night. How wonderful if healthcare could trigger the same mass interest, with thousands queuing when Zika vaccination becomes available? Indeed, how can we mobilize such mass response for all sorts of health prevention activities?

The early uses of Pokemon GO in healthcare are examples of simple adoption. Placing Pokestops in the wards and surrounds of a children’s ward provides distraction and joy to hospitalized children who may be in dire need of fun. There are also of course the usual reactionary demands that the game be banned from clinical spaces .

Social media has already taught us a lot about how to deliver health services in new ways. The great potential for augmented reality in healthcare is yet to be tapped . Pokemon GO can teach us even more. We must learn to be more nimble and agile in the way we develop interventions to change behavior and deliver health services. The engineering worldview has much to offer, and it shares the same DNA of scientific reasoning so embedded in modern healthcare research. We are entering a time when more and more of the population will be embedded in an online social web, and that will be the universe in which we must engage with them, and where healthcare is delivered. And we must embrace that future, because in the end, we #GottaCureEmAll.

 

 

 

 

Making sense of consent and health records in the digital age

May 8, 2016 § 2 Comments

There are few more potent touchstones for the public than the protection of their privacy, and this is especially true with our health records. Within these documents lies information that may affect your loved ones, your social standing, employability, and the way insurance companies rate your risk.

We now live in a world where our medical records are digitised. In many nations that information is also moving away from the clinician who captured the record to regional repositories, or even government run national repositories.

The more widely accessible our records are the more likely it is that someone who needs to care for us can access them – which is good. It is also more likely that the information might be seen by individuals whom we do not know, and for purposes we would not agree with – which is the bad side of the story.

It appears that there is no easy way to balance privacy with access – any record system represents a series of compromises in design and operation that leave the privacy wishes of some unmet, and the clinical needs of others ignored.

Core to this trade-off is the choice of consent model. Patients typically need to provide their consent for their health records to be seen by others, and this legal obligation continues in the digital world.

Patient consent for others to access their digital clinical records, or e-consent, can take a number of forms. Back 2004, working with colleagues who had expertise in privacy and security, we first described the continuum of choices between patients opting in or out of consent to view their health records, as well as the trade-offs that were associated with either choice [1].

Three broad approaches to e-consent are employed.

  1. “Opt Out” systems; in which a population is informed that unless individuals request otherwise, their records will be made available to be shared.
  2. “Opt in” systems; in which patients are asked to confirm that they are happy for their records to be made available when clinicians wish to view them.
  3. Hybrid consent models that combine an implied consent for records to be made available and an explicit consent to view.

Opt in models assume that only those who specifically give consent will allow their health records to be visible to others, and opt out models assume that record accessibility is the default, and will only be removed if a patient actively opts-out of the process. The opt-out models maximises ease of access to, and benefit from, electronic records for clinical decision making, at the possible expense of patient privacy protections. Opt-in models have the reverse benefit, maximising consumer choice and privacy, but at the possible expense of record availability and usefulness in support of making decisions (Figure 1).

Untitled1Figure 1Different forms of consent balance clinical access and patient privacy in different proportions (from Coiera and Clarke, 2004)

All of the United Kingdom’s shared records systems now emply hybrid consent models of one form or another. Clinicians can also ‘break the glass’ and access records if the patient is too ill or unable to consent. In the US a variety of consent models are used and privacy legislation varies from state to state. Patients belonging to a Health Maintenance Organisation (HMO) are typically deemed to have opted in by subscribing to an HMO.

How do we evaluate the risk of one consent model over others?

The last decade has made it very clear that, at least for national systems, there are two conflicting drivers in the selection between consent models. Those that worry about patient privacy and the risks of privacy breeches favour opt-in models. Governments that worry about the political consequences of being seen to invade the privacy of their citizens thus gravitate to this model. Those that worry about having a ‘critical mass’ of consumers enrolled in their record systems, and who do not feel that they are at political risk on the privacy front (perhaps because as citizens our privacy is being so rapidly eroded on so many fronts we no longer care) seem comfortable to go the opt-out route.

The risk profiles for opt in and opt out systems are thus quite different (Figure 2). Opt-out models risk making health records available for patient’s who, in principle, would object to such access but have not opted out. This may because they were either not capable of opting-out, or were not informed of their ability to opt-out.

For opt-in models, the greatest risk to a system operator is that important clinical records are unavailable at the time of decision-making, because patients who should have elected to opt-in were neither informed that they should have a record, or were not easily capable of making that choice.

Other groups, such as those who are informed and do opt-out, may be at greater clinical risk because of that choice, but are making a decision aware of the risks.

risk

Figure 2: The risk profiles for opt-in and opt-out patient record systems are different. Opt-out models risk making records available for patients who in principle would object to such access, but were not either capable or informed of their ability to opt-out. For opt-in models, the risk is that important clinical records are unavailable at the time of decision making, because patients who should have elected to opt-in were neither informed nor capable of making that choice.

Choosing a consent model is only half of the story

In our 2004 paper, we also made it clear that choosing between opt-in or out was not the end of the matter. There are many different ways in which we can grant access to records to clinicians and others. One can have an opt-in system which gives clinicians free access to all records with minimal auditing – a very risky approach. Alternatively you can have an opt-out system that places stringent gatekeeper demands on clinicians to prove who they are, that they have the right to access a document, that audits their access, and allows patients to specify which sections of their record are in or out – a very secure system.

Untitled2

Figure 3 – The different possible functions of consent balance clinical access or patient privacy in different proportions. The diagram is illustrative of the balances only – thus there is no intention to portray the balance between access and privacy as equal in the middle model of e-Consent as an audit trail. (From Coiera and Clarke, 2004)

So, whilst we need to be clear about the risks of opt in versus opt out, we should also recognise that it is only half of the debate. It is the mechanism of governance around the consent model that counts at least as much.

For consumer advocates, “winning the war” to go opt-in is actually just the first part of the battle. Indeed, it might even be the wrong battle to be fighting. It might be even more important to ensure that there is stringent governance around record access, and that it is very clear who is reading a record, and why.

References

  1. Coiera E and Clarke R, e-Consent: The design and implementation of consumer consent mechanisms in an electroninc environment. J Am Med Inform Assoc, 2004. 11(2): p. 129-140.

 

 

What should a national digital health system look like?

May 1, 2016 § Leave a comment

What is the role of government in contributing to the nation digital health infrastructure? That is not an easy question to answer. Every nation has its own specific variant of a health system, with different emphases on the public or private, on central government intervention or laissez-faire commerce.  I have in earlier blogs made the point that, despite these differences in national systems, we now collectively have enough experience that we cannot ignore the evidence when crafting national strategies.

Back in 2009, when I explored the implications of these structural differences for government, I came to the conclusion that digital health needed a ‘middle out’ governance model, rather than top-down or bottom-up approaches to strategy. One consequence of the thinking in that paper was that I formed a view that we did not need a centralised national summary care record – a view which left me with fewer friends in government than I used to have! I was only trying to be helpful …

With a new Australian Digital Health Agency, it is now a good time to revisit these questions, to learn from the past, and to come together as an informatics and e-health community, and give ourselves the best possible shot at getting digital health right.

Digging through my papers recently, I came across this briefing paper I wrote for the Secretary of Health in 2008 – well before the middle out and summary care record papers. It was a time when Facebook was in the ascendancy, so I used the term ‘Healthbook’ to portray my ideas for a distributed, federated digital information system.  Maybe now is a good time to revisit its spirit, if not the technical details?

‘Healthbook’ – the consumer as catalyst for the creation of a national ehealth infrastructure

E. Coiera, 2 May 2008

Briefing paper to DOHA

Current situation

Australia like many nations is struggling to identify a strategic approach to creating a health information infrastructure that is technically feasible, low risk, and affordable.

The current proposal for a national shared electronic health record (SEHR), presumes a centralised, potentially monolithic, structure, where every Australian has a health record summary stored for them, to facilitate health care provision. The mental model is similar to English NHS’ system, which has cost billions of pounds to implement, and has experienced significant technical and implementation challenges on the way. If Australia were to take a similar centralised approach to the SEHR, then it too would cost several billion dollars, presuming our cost structures are similar to the English NHS, and face its own technical risks. And after investing that money we are locked into ageing technologies that require continued significant investment. Implementation starts, but it never ends.

A second disadvantage of beginning with a centralised SEHR is that it demands ‘delayed gratification’. There is massive up front investment, substantial pain within the health jurisdictions during implementation, with benefits only arriving after many years, and little for consumers to see or appreciate despite the large sums of money being invested. It also draws resources away from other cheaper, but potentially higher value, elements of the eHealth infrastructure, specifically decision support technologies, which have great capability to reduce harm, improve safety, and deliver efficiency gains through more evidence-based use of investigations and therapeutics.

A different way

An alternative approach has emerged. Imagine that, rather than waiting 5-10 years for a ‘centrally planned’ SEHR (that is what it may take) we achieve many of the same goals in less than 5 years, at significantly less cost to government, in a market-driven and industry lead way, growing organically and flexibly, rapidly adopting technological innovation, and potentially building up new export industries for Australia’s IT industry. Imagine also if this new way had strong support from consumers, because it was all about them and their health care, and not about putting in expensive ‘backroom’ technologies they will never see.

There are three elements to this approach:

1 – The shareable record can be consumer rather than health service focussed: Utilising the resources of private industry, consumer demand for access to their record, personal health records are emerging as a major new business sector. The strongest evidence for this is the move by two of the largest IT companies into this space. Microsoft has made its first major step into healthcare with its HealthVault product, and Google Health is emerging as their main competitor. Both offer consumers a service to store their personal health information, and to make it accessible to health providers with consumer consent.

In the US many large health service organizations have many millions of their patients using locally developed personal health records, for example the VA hospitals, and Partners. Similar activities are underway here with smaller start-up companies e.g. myvitals.com. Expect a flurry of such companies to appear locally, or arrive from overseas, over the next 12 months.

There is much to be commended about personal health records, but there are also some major limitations, including – the potential for the consumer created record to be of poor quality or perceive to be so by clinicians, the lack of interoperability between different systems, the consequent locking in of one’s records to a single vendor, the poor connectivity between health service provider records and personal health records, the significant risk that personal health information may be used for secondary and commercial purposes, and for Australian’s, the very real risk that core national IP – the health records of all Australians, is stored overseas – resulting in a massive transfer of information and wealth overseas.

2 – The rise of social computing. While there has been talk of the internet being an online community since the mid ‘90s, only in the last 2 years has this really taken off, with Facebook, My space and others providing a sophisticated social networking experience that has caught the imagination of the average consumer, trained consumers in sophisticated information sharing strategies, and developed software to support this. Consumers are now comfortable to carry out many of their most personal transactions on the web, from banking, to finding partners and socializing. Blogging has created a generation that is far more comfortable in sharing their personal information than any before.

3 – The continuing rise of search. Google and its competitors continue to prosper. Health information is amongst the top two categories of information searched for. Consumers want information about their health, and continue to turn more to the Internet for that information.

Putting these three together it may now be possible for private industry to create information services that challenge the centralized monolithic SEHR model, and create a rich and flexible ehealth infrastructure on the way.

The idea of a facebook for health (or ‘healthbook’) is fairly straightforward – it is a web space where you manage your health information and access health information services, in the same way that your internet banking account is the place you manage your wealth e.g. looking at account balances, paying bills, transferring funds. There will be many competing ‘healthbook’ systems provided by industry, and we can expect companies to be offering consumers at least some or all of the following services:

  1. A personal health record, where you enter your own health information;
  2. Access to health information e.g. search engines, local guidelines, drug information, health leaflets;
  3. A social computing environment in which a personal health record and information can be shared amongst family, friends, clinicians, and groups;
  4. Links to a selected subset of health providers, allowing them to see personal health records, exchange messages (reminders, appointments, results, health messages), and maybe allow you to see some of their records about you e.g. a division of GPs might offer this service, or a private health insurer may negotiate with health service providers to offer this to their clients.

It is important to emphasise that we are not saying that the personal record now becomes the shared health record – it cannot and should not – but that the links to different clinical record systems we might find in a ‘healthbook’ effectively provides the first stage in shared access to clinical records. While such systems will grow organically, and possibly quite quickly, there are several missing pieces and some concerns that need to be addressed, including:

  • Message exchange and access to your records stored by the public hospital system
  • Message exchange and access to your records stored by other health services not part of the particular online consortium you join.
  • Interoperability between systems, allowing consumers to take their personal health information, and linked messages and records, to a different provider.
  • Protections for Australian health information going overseas and being exploited for secondary commercial purposes.
  • Accreditation of healthbook providers to ensure clinical service providers and patients are comfortable in making their clinical records available via them.

If issues such as these were addressed quickly, we may in Australia be creating business conditions not yet operating anywhere else in the world, and create an opportunity for our local IT industry to corner or at least become highly competitive in a new business clearly destined to become the single largest information technology market.

It thus seems entirely feasible for government to choose not to invest in a monolithic national e-health infrastructure, but foster competition and rapid expansion of a web and business driven infrastructure. Government creates appropriate protections for the community and their personal information while supporting high quality and safe clinical care. Government is a key enabler, working with the professions and individuals to identify incentives and provides critical missing elements needed to fast track this world, including regulation, legislation, investment in making jurisdictional systems interoperable, provision of public knowledge and information sources, and investment in evaluation and research to drive evidence-based innovation.

What might happen next

If government steps in to address some of these barriers to fully interconnecting consumer-based personal health records, we could imagine three stages in the evolution of our national eHealth infrastructure:

Stage 1 (next 2 years) – Personal health record systems available and taken up by a few Australian. Some offer access to knowledge services e.g. Healthinsite; some service providers band together to allow their records to be linked to these systems and for messages to be exchanged between providers and consumers within this system. Records might be shareable within these restricted health service organizations. Standards are being developed by NEHTA, ISO and Standards Australia, and industry and the jurisdictions are moving to comply with these as they install eHealth systems.

Stage 2 (2-3 years) – Messaging standards and unique and secure IDs for every Australian (the UPI) are in place and allow communication between providers and any standards compliant ‘healthbook’. Record portability legislation encourages innovation and competition and avoids monopoly outcomes (similar to mobile telephone number portability, where a consumer can take their phone number and address book from one Telco handset and swap them to a different one). Some state jurisdictions and primary care divisions provide standard secure web interfaces to any accredited private system, and consumers chose to link to their records in these systems, if they are aware that they are able to. When viewing linked records they appear in non-standard ways, dependent on the structure of the local system the record sits on. 10% of Australians have a ‘healthbook’ page, with international IT companies amongst the major players, but Australians may end up trusting their health providers and government with their private information, so the biggest user base may be found with Divisions of general practice, or private health insurance companies. Many other players jockey for dominance.

Stage 3 (3-5 years) – Interoperability standards have allowed any accredited record provider to provide a discoverable web service, so that any healthbook can access these records, with consumer permission. This means when you create your new healthbook account and put in your UHI, the system will find all the records associated with your care that are on the web, and ask you if you want to link them in. When records are browsed from within a consumer space, they have a uniform appearance. So, irrespective of which company’s ‘Healthbook’ you use, a clinician can always find the information they want in the same place, by selecting the ‘common user interface’ option. It is possible to extract elements of provider records into a personal health record manually or automatically. For example, you can extract medication lists, test results, or allergies from your GP system into your personal health record.

For those who choose it, their treating clinician may decide which data gets extracted from the clinical record into the personal summary record. For Australians who are not interested in using a private system, or are unable to do so, a ‘vanilla’ personal health record is made available, possibly via the jurisdictions, that allows a provider to see other linked records for a given patient, with a patient’s consent. Local Australian companies provide the back end service to consumer health sites, with the front end run by large health delivery organizations e.g. public hospital systems, and private insurers. International IT companies provide some of the core technologies underpinning these systems but the data is stored in Australia, protected by legislation from going offshore, or even analyses of the data going offshore.

The Role of government

Government has a role to:

  • Facilitate – through standards activities (NEHTA) and early investment for industry development and research. For example COAG may wish to provide seed funding for 2-4 large-scale implementations e.g. requiring each consortium to include a public hospital system, a primary care organization, and for some % of the industry membership to be locally based. This attracts industry to invest, and creates a competitive climate in which innovation is focussed on delivering to the consumer as the main customer. It should be clear investment is for start up and that all programs need to be self-funding at the end of the projects. There may be incentives for meeting subscription and transaction rate milestones, and for health services incentives for meeting outcome targets e.g. preventative health activities. There may be penalties for failure to deliver, including withholding of payments should benchmarks not be met. There should be some key deliverables that we expect of out any such consortia, including:
    1. Working with standards organizations like NEHTA, they should agree on a working record portability standard and mechanism, that allows a consumer to extract their personal health record, provider messages, links to clinical records, and any other information such as a future shared health record, and transfer it to another provider;
    2. Consortia should demonstrate interoperability between each other for record mobility between consortia, and for messaging between providers and different consortia.
    3. Working with standards organizations, the consortia should agree on a default ‘common user interface’, which provides a uniform way of accessing linked records, messages, and patient data for clinicians and consumers. There is no obligation to use this interface as different systems will want to ‘value add’ and provide better user experiences for their customers. We want to ensure that clinicians will only need to learn how to access healthbook records once, and always find the information they need in the same place every time – for safety as well as efficiency reasons.
    4. Demonstrated use of a unique personal identifier like the UHI, ensuring secure and safe creation of new accounts, protection of personal information, and ease of access in clinical situations.
    5. Demonstrated security and consent mechanisms so that consumers feel safe using these systems.
  • Protect – the privacy of individuals, and the national IP – through legislation, and where appropriate accreditation. Consumers will need record portability and not be locked into one vendor, so legislation should allow for consumers to extract their digital records from any one vendor and move to another. Consumers and providers will want to know that healthbook systems are accredited before records are linked into them, and that accreditation ensures that records made available this way are not used for any purpose other than clinical care, and only with the consent of consumers.
  • Evaluate – We need benchmarks for this program, both in terms of uptake by citizens, as well as adoption rates, usage and benefits. Evaluation programs for benefits are best run by independent organizations, and this is a clear role for academic institutions.
  • Ensure Access – Ensuring all citizens and health service providers have access via a decent broadband system, and for those citizens who choose not to actively be engaged, or are unable e.g. infirm, elderly, then create an option of clinician or health service managed e-services where the consumer gives permission for their ‘healthbook’ to be created for them. Facilitate early adoption by service providers with an incentives program (e.g. to make practice records linkable to commercial systems).
  • Innovate – We want Australian industry to have access to new ideas and IP to make them competitive with the US industry in particular, and there is a clear opportunity to support Australian R&D and innovation with targeted support for eHealth innovation programs.
  • Participate – where jurisdictions control medical content such as records or knowledge resources (Healthinsite, service or provider directories), make these available and interoperable with private sector systems. Where government has a specific duty to individuals such as military personnel, provide or auspice services available to citizens e.g. military personnel may have records that cannot be linked for security reasons to commercial systems, so a military system might be needed, which links to all public records, but remains secure.

Appendix – Some benefits and ideas worth capturing at this stage

Benefits of this approach

  • A better informed, better engaged population
  • A transition plan to implementing SHER functions, not a ‘big bang’ centralised SHER, which is a single point of failure if things go wrong.
  • Technical and investment risks are lower, as the elements government may want to invest in e.g. standards, making jurisdictional records compliant, and messaging are all required under the monolithic SEHR model too. So, if the consumer-drive model does not work, government can in the future elect to step in and can complete the ‘last mile’ e.g. with health information exchanges.
  • Most of the implementation risk is borne by private enterprise
  • A shift to preventative healthcare, as consumers build for possibly the first time a place where they actively manage their healthcare, and receive targeted messages and support.
  • Safer care – driven by consumer benchmarking and rating, the use of consumer decision support systems, easier interaction with clinicians via messaging, a shareable record that allows clinicians to see the bigger clinical picture.
  • Support for the Australia it industry and research community to become a world leader in a market that is highly lucrative – if there is to be a new company that becomes the Google of healthcare, why could it not be an Australian company?

Ideas

  • Use the healthbook to send reminders for vaccinations, screening tests, routine check ups.
  • Support for healthy journeys e.g. parents with young children accessing information at crucial child development stages, and possibly linking up with the community 1-stop shop proposal by government.
  • If every high school student has a computer why can’t they use ‘healthbook’ applications to manage their exercise and eating regimes, by providing a online social environment where quality information is shared, groups can form e.g. how to cope with anorexia or obesity, providing information and social support?
  • Support for more targeted, efficient access to services e.g. by providing consumers health service directories, similar to ‘choose and book’ in the NHS, with the ability to identify providers, and make appointments. Especially valuable for rural and remote citizens to identify services that might be available to them outside of local area.
  • Consumer based benchmarking of services – similar to Amazon star rating for books (this will happen anyway – best to support it being as informative and balanced as possible).

 

Four futures for the healthcare system

February 20, 2016 § 1 Comment

That healthcare systems the world over are under continual pressure to adapt is not in question. With continual concerns that current arrangements are not sustainable, researchers and policy makers must somehow make plans, allocate resources, and try to refashion delivery systems as best they can.

Such decision-making is almost invariably compromised. Politics makes it hard for any form of consensus to emerge, because political consensus leads to political disadvantage for at least one of the parties. Vested interests, whether commercial or professional, also reduce the likelihood that comprehensive change will occur.

Underlying these disagreements of purpose is a disagreement about the future. Different actors all wish to will different outcomes into existence, and their disagreement means that no particular one will ever arise. The additional confounder that predicting the future is notoriously hard seems to not enter the discussion at all.

One way to minimize disagreement and to build consensus would seem to be to have all parties come to a consensus of what the future is going to be like. With a common recognition of the nature of the future that will befall us, or that we aspire to, it might becomes possible to work backwards and agree on what must happen today.

Building different scenarios to describe the future

There seem to be two major determinants of the future. The first is the environment within which the health system has to function. The second is our willingness or ability to adapt the health system to meet any particular goal or challenge. Together these two axes generate four very different future scenarios. Each scenario has a very different set of challenges to it, and very different opportunities.

4scenarios
Making Health Services Work: In this quadrant, we are blessed with relatively stable conditions, and even though our capacity or will for change is modest, we can embark on incremental changes in response to projected future needs. We focus on gentle redesign of current health services, tweaking them as we need. The life of a heath services researcher is a comfortable one: no one needs or wants a revolution and there is time and resource enough to solve the problems of the day.

New Ways: Despite forgiving and stable times, in this quadrant we have an appetite for major change. Perhaps we see major changes ahead and recognize that incremental improvements will be insufficient to deal with them. Maybe we see future years with demographic challenges such as clinical workforce shortages and the increasing burden of disease associated with an ageing population. Consequently, more radical models of care are developed, evaluated and adopted. Rather than simply retro-fitting the way things are done, we radically reevaluate how things might be done, and envisage new ways of working, and conceive new ways to deliver services.

Turbulence systems: The risk of major shocks to the health system are ever present, including pandemics, weather events of ‘mass dimension’ associated with climate change, and human conflict. It is possible to make preparations for these unstable times. We might imagine that we set about to design some capacity for ‘turbulence’ management into our health services. Such turbulence systems would help us detect emerging shocks as early as possible, and would then reallocate resources as best we can when they arrive. The way that global responses to disease outbreaks has rapidly evolved over the last decade shows what is possible when our focus is on shock detection and response. Similar turbulence systems are evolving to respond to natural disasters and terrorism – so there are already models to learn from. In this quadrant then, we redesign the health system to be far more adaptive and flexible than it is today, recognizing that the future is not just going to be punctuated by rare external shocks, but that turbulence is the norm, and any system without shock absorbers will quickly shatter.

All hands on deck: In this scenario, health services receive major shocks in the near future, and well ahead of our ability to plan for these events. For example a series of major weather events or a new global pandemic could all stretch today’s health system beyond its capability to respond. Another route to this scenario in the long term is to not prepare for events like global warming or infectious disease outbreaks or an ageing population, and because of disagreement, underinvestment or poor planning, we do nothing. If such circumstances arrive, then the best thing that everyone in the health system can do is to abandon working on the long term, and apply our skills wherever they are most needed. In such crisis times, researchers will find themselves at the front lines, with a profound understanding and new respect for what implementation and translation really mean.

Picking a scenario

Which of these four worlds will we live in? It is likely that we have had the great good fortune over the last few decades of living in stable and reactively unambitious times, tinkering with a system that we have not had the appetite to change much. It seems likely that instability will increasingly become the norm however. I don’t think we will have the luxury of idly imagining some perfect but different future, debating its merits, and then starting to march toward it. There will be too much turbulence about to ever allow us the luxury of knowing exactly what the right system configuration will be. If we are very lucky, and very clever, we will increasingly redesign health services to be turbulence systems. Even if the flight to the future is a bumpy one, the stabilizers we create will help us keep the system doing what it is meant to do. ‘All hands on deck’ is the joker in the pack. I personally look forward to not ever having to work in this quadrant.

[These ideas were first published in a paper my team prepared back in 2007, and since it first appeared, the turbulence has slowly become more frequent …]

 

Evidence-based health informatics

February 11, 2016 § 6 Comments

Have we reached peak e-health yet?

Anyone who works in the e-health space lives in two contradictory universes.

The first universe is that of our exciting digital health future. This shiny gadget-laden paradise sees technology in harmony with the health system, which has become adaptive, personal, and effective. Diseases tumble under the onslaught of big data and miracle smart watches. Government, industry, clinicians and people off the street hold hands around the bonfire of innovation. Teeth are unfeasibly white wherever you look.

The second universe is Dickensian. It is the doomy world in which clinicians hide in shadows, forced to use clearly dysfunctional IT systems. Electronic health records take forever to use, and don’t fit clinical work practice. Health providers hide behind burning barricades when the clinicians revolt. Government bureaucrats in crisp suits dissemble in velvet-lined rooms, softly explaining the latest cost overrun, delay, or security breach. Our personal health files get passed by street urchins hand-to-hand on dirty thumbnail drives, until they end up in the clutches of Fagin like characters.

Both of these universes are real. We live in them every day. One is all upside, the other mostly down. We will have reached peak e-health the day that the downside exceeds the upside and stays there. Depending on who you are and what you read, for many clinicians, we have arrived at that point.

The laws of informatics

To understand why e-health often disappoints requires some perspective and distance. Informed observers again and again see the same pattern of large technology driven projects sucking up all the e-health oxygen and resources, and then failing to deliver. Clinicians see that the technology they can buy as a consumer is more beautiful and more useful that anything they encounter at work.

I remember a meeting I attended with Branko Cesnik. After a long presentation about a proposed new national e-health system, focusing entirely on technical standards and information architectures, Branko piped up: “Excuse me, but you’ve broken the first law of informatics”. What he meant was that the most basic premise for any clinical information system is that it exists to solve a clinical problem. If you start with the technology, and ignore the problem, you will fail.

There are many corollary informatics laws and principles. Never build a clinical system to solve a policy or administrative problem unless it is also solving a clinical problem. Technology is just one component of the socio-technical system, and building technology in isolation from that system just builds an isolated technology [3].

Breaking the laws of informatics

So, no e-health project starts in a vacuum of memory. Rarely do we need to design a system from first principles. We have many decades of experience to tell us what the right thing to do is. Many decades of what not to do sits on the shelf next to it. Next to these sits the discipline of health informatics itself. Whilst it borrows heavily from other disciplines, it has its own central reason to exist – the study of the health system, and of how to design ways of changing it for the better, supported by technology. Informatics has produced research in volume.

Yet today it would be fair to say that most people who work in the e-health space don’t know that this evidence exists, and if they know it does exist, they probably discount it. You might hear “N of 1” excuse making, which is the argument that the evidence “does not apply here because we are different” or “we will get it right where others have failed because we are smarter”. Sometimes system builders say that the only evidence that matters is their personal experience. We are engineers after all, and not scientists. What we need are tools, resources, a target and a deadline, not research.

Well, you are not different. You are building a complex intervention in a complex system, where causality is hard to understand, let alone control. While the details of your system might differ, from a complexity science perspective, each large e-health project ends up confronting the same class of nasty problem.

The results of ignoring evidence from the past are clear to see. If many of the clinical information systems I have seen were designed according to basic principles of human factors engineering, I would like to know what those principles are. If most of today’s clinical information systems are designed to minimize technology-induced harm and error, I will hold a party and retire, my life’s work done.

The basic laws of informatics exist, but they are rarely applied. Case histories are left in boxes under desks, rather than taught to practitioners. The great work of the informatics research community sits gathering digital dust in journals and conference proceedings, and does not inform much of what is built and used daily.

None of this story is new. Many other disciplines have faced identical challenges. The very name Evidence-based Medicine (EBM), for example, is a call to arms to move from anecdote and personal experience, towards research and data driven decision-making. I remember in the late ‘90s, as the EBM movement started (and it was as much a social movement as anything else), just how hard the push back was from the medical profession. The very name was an insult! EBM was devaluing the practical, rich daily experience of every doctor, who knew their patients ‘best’, and every patient was ‘different’ to those in the research trials. So, the evidence did not apply.

EBM remains a work in progress. All you need to do today is to see a map of clinical variation to understand that much of what is done remains without an evidence base to support it. Why is one kind of prosthetic hip joint used in one hospital, but a different one in another, especially given the differences in cost, hip failure and infection? Why does one developed country have high caesarian section rates when a comparable one does not? These are the result of pragmatic ‘engineering’ decisions by clinicians – to attack the solution to a clinical problem one way, and not another.  I don’t think healthcare delivery is so different to informatics in that respect.

Is it time for evidence-based health informatics?

It is time we made the praxis of informatics evidence-based.

That means we should strive to see that every decision that is made about the selection, design, implementation and use of an informatics intervention is based on rigorously collected and analyzed data. We should choose the option that is most likely to succeed based on the very best evidence we have.

For this to happen, much needs to change in the way that research is conducted and communicated, and much needs to happen in the way that informatics is practiced as well:

  • We will need to develop a rich understanding of the kinds of questions that informatics professionals ask every day;
  • Where the evidence to answer a question exists, we need robust processes to synthesize and summarize that evidence into practitioner actionable form;
  • Where the evidence does not exist and the question is important, then it is up to researchers to conduct the research that can provide the answer.

In EBM, there is a lovely notion that we need problem oriented evidence that matters (POEM) [1] (covered in some detail in Chapter 6 of The Guide to Health Informatics). It is easy enough to imagine the questions that can be answered with informatics POEMs:

  • What is the safe limit to the number of medications I can show a clinician in a drop-down menu?
  • I want to improve medication adherence in my Type 2 Diabetic patients. Is a text message reminder the most cost-effective solution?
  • I want to reduce the time my docs spend documenting in clinic. What is the evidence that an EHR can reduce clinician documentation time?
  • How gradually should I roll out the implementation of the new EHR in my hospital?
  • What changes will I need to make to the workflow of my nursing staff if I implement this new medication management system?

EBM also emphasises that the answer to any question is never an absolute one based on the science, because the final decision is also shaped by patient preferences. A patient with cancer may choose a treatment that is less likely to cure them, because it is also less likely to have major side-effects, which is important given their other goals. The same obviously holds in evidence-based health informatics (EBHI).

The Challenges of EBHI

Making this vision come true would see some significant long term changes to the business of health informatics research and praxis:

  • Questions: Practitioners will need develop a culture of seeking evidence to answer questions, and not simply do what they have always done, or their colleagues do. They will need to be clear about their own information needs, and to be trained to ask clear and answerable questions. There will need to be a concerted partnership between practitioners and researchers to understand what an answerable question looks like. EBM has a rich taxonomy of question types and the questions in informatics will be different, emphasizing engineering, organizational, and human factors issues amongst others. There will always be questions with no answer, and that is the time experience and judgment come to the fore. Even here though, analytic tools can help informaticians explore historical data to find the best historical evidence to support choices.
  • Answers: The Cochrane Collaboration helped pioneer the development of robust processes of meta-analysis and systematic review, and the translation of these into knowledge products for clinicians. We will need to develop a new informatics knowledge translational profession that is responsible for understanding informatics questions, and finding methods to extract the most robust answers to them from the research literature and historical data. As much of this evidence does not typically come from randomised controlled trials, other methods than meta-analysis will be needed. Case libraries, which no doubt exist today, will be enhanced and shaped to support the EBHI enterprise. Because we are informaticians, we will clearly favor automated over manual ways of searching for, and summarizing, the research evidence [2]. We will also hopefully excel at developing the tools that practitioners use to frame their questions and get the answers they need. There are surely both public good and commercial drivers to support the creation of the knowledge products we need.
  • Bringing implementation science to informatics: We know that informatics interventions are complex interventions in complex systems, and that the effect of these interventions vary depending on the organisational context. So, the practice of EBHI will of necessity see answers to questions being modified because of local context. I suspect that this will mean that one of the major research challenges to emerge from embracing EBHI is to develop robust and evidence-based methods to support localization or contextualisation of knowledge. While every context is no doubt unique, we should be able to draw upon the emerging lessons of implementation science to understand how to support local variation in a way that is most likely to see successful outcomes.
  • Professionalization: Along with culture change would come changes to the way informatics professionals are accredited, and reaccredited. Continuing professional education is a foundation of the reaccreditation process, and provides a powerful opportunity for professionals to catch up with the major changes in science, and how those changes impact the way they should approach their work.

Conclusion

There comes a moment when surely it is time to declare that enough is enough. There is an unspoken crisis in e-health right now. The rhetoric of innovation, renewal, modernization and digitization make us all want to believers. The long and growing list of failed large-scale e-health projects, the uncomfortable silence that hangs when good people talk about the safety risks of technology, make some think that e-health is an ill-conceived if well intentioned moment in the evolution of modern health care. This does not have to be.

To avoid peak e-health we need to not just minimize the downside of what we do by avoiding mistakes. We also have to maximize the upside, and seize the transformative opportunities technology brings.

Everything I have seen in medicine’s journey to become evidence-based tells me that this will not be at all easy to accomplish, and that it will take decades. But until we do, the same mistakes will likely be rediscovered and remade.

We have the tools to create a different universe. What is needed is evidence, will, a culture of learning, and hard work. Less Dickens and dystopia. More Star Trek and utopia.

Further reading:

Since I wrote this blog a collection of important papers covering the important topic of how we evaluate health informatics and choose which technologies are fit for purpose has been published in the book Evidence-based Health Informatics.

References

  1. Slawson DC, Shaughnessy AF, Bennett JH. Becoming a medical information master: feeling good about not knowing everything. The Journal of Family Practice 1994;38(5):505-13
  2. Tsafnat G, Glasziou PP, Choong MK, et al. Systematic Review Automation Technologies. Systematic Reviews 2014;3(1):74
  3. Coiera E. Four rules for the reinvention of healthcare. BMJ 2004;328(7449):1197-99

 

 An Italian translation of this article is available

 

A brief guide to the health informatics research literature

February 8, 2016 § Leave a comment

Every year the body of research evidence in health informatics grows. To stay on top of that research, you need to know where to look for research findings, and what the best quality sources of it are. If you are new to informatics, or don’t have research training, then you may not know where or how to look. This page is for you.

There are a large number of journals that publish only informatics research. Many mainstream health journals will also have an occasional (and important) informatics paper in them. Rather than collecting a long list of all of these possible sources, I’d like to offer the following set of resources as a ‘core’ to start with.

(There are many other very good health informatics journals, and their omission here is not meant to imply they are not also worthwhile. We just have to start somewhere. If you have suggestions for this page I really would welcome them, and I will do my best to update the list).

Texts  

If you require an overview of the recent health informatics literature, especially if you are new to the area, then you really do need to sit down and read through one of the major textbooks in the area. These will outline the different areas of research, and summarise the recent state of the art.

I am of course biased and want you to read the Guide to Health Informatics.

A collection of important papers covering the important topic of how we evaluate health informatics and choose which technologies are fit for purpose can be found in the book Evidence-based Health Informatics.

Another text that has a well-earned reputation is Ted Shortliffe’s Biomedical Informatics.

Health Informatics sits on the shoulders of the information and computer sciences, psychology, sociology, management science and more. A mistake many make is to think that you can get a handle on these topics just from a health informatics text. You wont. Here are a few classic texts, from these ‘mother’ disciplines;

Computer networks (5th ed). Tannenbaum and Wetherall.  Pearson. 2010.

Engineering Psychology & Human Performance (4th ed.). Wickens et al. Psychology Press. 2012.

Artificial Intelligence: A Modern Approach  (3rd ed). Russell and Norvig. Pearson. 2013

Journals

Google Scholar: A major barrier to accessing the research literature is that much of it is trapped behind paywalls. Unless you work at a university and can access journals via the library, you will be asked by some publishers to pay an exorbitant fee to read even individual papers. Many journals are now however open-access, or make some of their papers available free on publication. Most journals also allow authors to freely place an early copy of a paper onto a university or other repository.

The most powerful way to finding these research articles is Google Scholar. Scholar does a great job of finding all the publicly available copies of a paper, even if the journal’s version is still behind a paywall. Getting yourself comfortable with using Scholar, and exploring what it does, provides you with a major tool for accessing the research literature.

Yearbook of Medical Informatics. The International Medical Informatics Association (IMIA) is the peak global academic body for health informatics and each year produces a summary of the ‘best’ of the last year’s research from the journals in the form of the Yearbook of Medical Informatics. The recent editions of the yearbook are all freely available online.

Next, I’d suggest the following ‘core’ journals for you to skim on a regular basis. Once you are familiar with these you will no doubt move on the the very many others that publish important informatics research.

JAMIA. The Journal of the American Medical Informatics Association (AMIA) is the peak general informatics journal, and a great place to keep tabs on recent trends. While it requires a subscription, all articles are placed into open access 12 months after publication (so you can find them using Scholar) and several articles every month are free. You can keep abreast of papers as they are published through the advanced access page.

JMIR. The Journal of Medical Internet Research is a high impact specialist journal focusing on Web-based informatics interventions. It is open access which means that all articles are free.

To round out the journals you might want to add into your regular research scan the following journals which are all very well regarded.

Conferences

Whilst journals typically will publish well polished work, there is often a lag of a year or more before submitted papers are published. The advantage of research conferences is that you get more recent work, sometimes at an earlier stages of development, but also closer to the cutting edge.

There are a plethora of informatics conferences internationally but the following publish their papers freely online, and are typically of high quality.

AMIA Annual Symposium. AMIA holds what is probably the most prestigious annual health informatics conference, and releases all papers via NLM. An associated AMIA Summit on Translational Sciences/Bioinformatics is also freely available.

Medinfo. IMIA holds a biannual international conference, and given its status as the peak global academic society, Medinfo papers have a truly international flavour. Papers are open access and made available by IOS press through its Studies in Health Technology and Informatics series (where many other free proceedings can be found). Recent Medinfo proceedings include 2015 and 2013.

As with textbooks and journals, it is worth remembering that much of importance to health informatics is published in other ‘mother’ disciplines. For example it is well worth keeping abreast of the following conferences for recent progress:

WWW conference. The World Wide Web Conference is organised by the ACM and is an annual conference looking at innovations in the Internet space. Recent proceedings include 2015 and 2014.

The ACM Digital Library, which contains WWW, is a cornucopia of information and computer science conference proceedings. Many a rainy weekend can be wasted browsing here. You may need to hunt the web site of the actual conference however to get free access to papers as ACM will often try to charge for papers you can find freely on the home page of the conference.

Other strategies

Browsing journals is one way to keep up to date. The other is to follow the work of individual researchers whose interests mirror your own. The easiest way to do this is to find their personal page on Google Scholar (and if they don’t have one tell them to make one!). Here is mine, as an example. There are two basic ways to attack a scholar page. When you first see a Scholar page, the papers are ranked by their impact (as measured by other people citing the papers). This will give you a feeling about the work the researcher is most noted for. The second way is to click the year button. You will then see papers in date order, starting with the most recent. This is a terrific way of seeing what your pet researcher has been up to lately.

There is a regularly updated list of biomedical informatics researchers, ranked by citation impact, and this is a great way to discover health informatics scientists. Remember that when researchers work in more specialised fields, they may not have as many citations and so be lower down the list.

Once you find a few favourite researchers, try to see what they have done recently, follow them on Twitter, and if they have a blog, try to read it.

%d bloggers like this: